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Аннотация 

В данной работе исследуются методы генерации обучающих данных для повышения 

точности прогнозирования спроса на рынке нефти. Рассматриваются ограничения тради-

ционных подходов и обосновывается применение генеративно-состязательных сетей, в част-

ности модели TimeGAN (Time-series Generative Adversarial Network), для создания синтетиче-

ских временных рядов. Результаты показывают, что TimeGAN позволяет генерировать реа-

листичные данные, приближенные к реальным, с сохранением волатильности и структурных 

особенностей рынка. Также выявлены ограничения модели, требующие дальнейшего исследо-

вания для повышения эффективности и точности прогнозирования спроса на нефть в усло-

виях рыночной нестабильности. 
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Введение и актуальность  

В современном мире высокоуровневое прогнозирование спроса играет важнейшую 

роль в управлении цепочками поставок, оптимизации уровня запасов и повышении общей опе-

рационной эффективности. Несмотря на то, что традиционные методы прогнозирования явля-

ются полезными, их использование ограничивается изменчивостью современной динамики 

рынка (Розенцвайг, 2014). Поскольку компании продолжают бороться с проблемами быстро 

развивающегося рынка, интеграция методов глубокого обучения (далее ГО) является перспек-

тивным решением для повышения точности прогнозирования спроса (Каукин и др., 2023;  Ко-

пытин, 2024; Farzana, Prakash, 2020). Однако, специфика прогнозирования спроса на рынке 

нефти указывает на сравнительно небольшой объем обучающих данных, что вносит ряд огра-

ничений в использование моделей ГО. По мнению авторов, возможным решением данной про-

блемы являются методы генерации обучающих данных.  

На сегодняшний день существует значительное количество методологических подхо-

дов к генерации обучающих данных, включая такие методы, как генерация на основе геомет-

рического броуновского движения (далее GBM), авторегрессионная интегрированная сколь-

зящая средняя (далее ARIMA), бутстрэппинг на основе перемешивания блоков (далее MBB), 

а также добавление гауссовского шума к простому скользящему среднему (далее GN+SMA). 

Несмотря на очевидные преимущества указанных методов, с точки зрения авторов, они не 

обеспечивают должного уровня эффективности при формировании обучающих выборок для 

моделирования спроса на рынке нефти из-за ряда ограничений, вызванных структурными осо-

бенностями архитектуры моделей. Одним из возможных решений данной проблемы могут 

стать генеративно-состязательные сети (GAN). Применение данного подхода к генерации обу-

чающих данных представляет перспективу значительного повышения точности прогнозных 

моделей, особенно в контексте задач прогнозирования спроса на нефтяном рынке.  

В рамках данного исследования авторы выдвигают следующие гипотезы. 

1. Использование модели TimeGAN для генерации синтетических временных рядов 

позволяет создать обучающую выборку, сохраняющую ключевые статистические и динами-

ческие свойства реальных данных. 

2. Дополнение обучающей выборки синтетическими данными, сгенерированными с 

помощью TimeGAN, приводит к повышению точности прогноза модели MLP по сравнению с 

использованием только реальных данных. 

3. TimeGAN обеспечивает более высокое качество синтетических данных для задач 

прогнозирования спроса на нефть по сравнению с классическими методами генерации (GBM, 

ARIMA, MBB, GN+SMA). 

Для формирования убедительной доказательной базы, необходимой для подтвержде-

ния или опровержения выдвинутых гипотез, в рамках данного исследования авторами были 

поставлены следующие научные задачи. 

1. Проанализировать характеристики временного ряда, отражающего динамику цен 

на нефть марки «Brent», с акцентом на выявление ключевых структурных особенностей, вклю-

чая сезонные колебания, волатильность и факторы, определяющие долгосрочные и кратко-

срочные тренды. 
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2. Осуществить сравнительный анализ различных методов генерации синтетических 

временных рядов, включая TimeGAN, ARIMA, стохастические и эмпирические подходы, с це-

лью оценки их применимости к задачам расширения обучающих выборок в условиях ограни-

ченности исходных данных. 

3. Реализовать и обучить модель генеративно-состязательной сети, адаптированной к 

особенностям нефтяного рынка, а также провести эмпирическую оценку качества сгенериро-

ванных данных с использованием статистических и прогнозных метрик. 

Оценить влияние синтетических данных на точность прогностических моделей путем 

обучения на выборках с реальными и дополненными данными, а также провести количествен-

ный анализ прироста прогностической точности. 

1. Научный обзор релевантной литературы 

В рамках исследования выделен ряд актуальных работ, которые посвящены прогнози-

рованию на основе методов глубокого обучения, с акцентом на применение генеративно-со-

стязательных сетей. 

Одним из таких исследований является работа «Volatility and Irregularity Capturing in 

Stock Price Indices Using Time Series Generative Adversarial Networks (TimeGAN)» (Mushunje et 

al., 2023), в которой авторы прогнозируют динамику цен на акции с учетом волатильности и 

различных нелинейных движений в индексах цен, особенно при наличии непредвиденных со-

бытий, таких как пандемия COVID-19. 

Исследователи выдвинули предположение о том, что в таком непредсказуемом усло-

вии, как пандемический шок, цены на акции подвержены различным скачкам и колебаниям, 

что приводит к появлению неоднородных тенденций в данных временного ряда. Традицион-

ные модели прогнозирования не всегда способны учитывать подобные особенности, поэтому 

их использование может приводить к значительным ошибкам прогнозирования при работе с 

временными рядами, подверженным резким изменениям. Таким образом, авторы считают, что 

для прогнозирования цен на акции в условиях пандемического шока необходимы эффектив-

ные и надежные инструменты, такие как генеративно-состязательные сети (GAN).  

Генеративная модель TimeGAN (Time-series Generative Adversarial Network), разрабо-

танная для временных рядов, которые имеют зависимость данных от времени, была использо-

вана авторами для создания синтетических временных рядов. Данные синтетические ряды 

приближены к реальным данным о ценах на акции и учитывают их волатильное поведение. 

Проведя обучение модели TimeGAN на основании исторических данных, включающих коле-

бания фондового индекса DAX с 2010 по 2022 г., исследователям удалось установить основ-

ные закономерности временных рядов. Обучение модели состояло из таких элементов, как 

генератор, дискриминатор, сеть встраивания и сеть восстановления, которые необходимы для 

изучения зависимостей, временной структуры и волатильности временных рядов. Было выяв-

лено, что модель TimeGAN способна улавливать резкие скачки и нелинейность, которые свой-

ственны финансовым данным, благодаря чему TimeGAN является эффективным и подходя-

щим инструментом для создания синтетических данных, которые отражают реальную дина-

мику рынка с учетом волатильности. Авторы заключили, что благодаря использованию мо-

дели TimeGAN минимизируются ошибки прогнозирования, а также улучшается устойчивость 
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других прогнозных моделей, таких как LSTM и GRU. Таким образом, данная исследователь-

ская работа выявила эффективность модели TimeGAN в воспроизводстве волатильности вре-

менных рядов, что делает ее более точной в сравнении с традиционными прогностическими 

моделями. 

Позже тема использования модели TimeGAN для более точных прогнозов представлена 

в научной статье «Enhancing Short-Term Power Load Forecasting for Industrial and Commercial 

Buildings: A Hybrid Approach Using TimeGAN, CNN, and LSTM» (Liu et al., 2023). В данном 

исследовании авторами используется гибридная модель, сочетающая TimeGAN, сверточные 

нейронные сети (CNN), а также долгую краткосрочную память (LSTM) для повышения точ-

ности прогнозирования электрической нагрузки для промышленной и коммерческой инфра-

структуры. Эта работа направлена на решение проблем прогнозирования краткосрочного 

спроса на электроэнергию вследствие изменения характера нагрузки из-за колебаний спроса, 

сезонных тенденций и других факторов. 

В контексте данного исследования модель TimeGAN используется для создания синте-

тических временных рядов, которые позволяют дополнить исходный набор данных и устра-

нить пробелы в существующих данных. Для проведения исследования авторы использовали 

исходные данные о нагрузке на электросети на четырех различных типах промышленных и 

коммерческих зданий в рамках двухмесячного периода. Однако для эффективного прогнози-

рования модели глубокого обучения требуют обширных наборов данных, охватывающих пе-

риод в несколько лет. Для того, чтобы устранить дефицит данных и расширить исходный 

набор данных, была использована модель TimeGAN. Данная модель была синхронно обучена 

авторами с помощью трех функций потерь, что позволило сгенерировать синтетические дан-

ные для дополнения ограниченного набора исходных данных. Далее сгенерированные данные 

подвергаются фильтрации через модель CNN, что позволяет оптимизировать извлечение ин-

формации и ускорить работу сети прогнозирования. Завершающим этапом является передача 

извлеченной информации в сеть LSTM для прогнозирования нагрузки на электросеть. 

Данное исследование продемонстрировало, что использование гибридного подхода, со-

четающего TimeGAN, CNN и LSTM, позволяет выявлять сложные нелинейные взаимосвязи и 

значительно повышать точность прогнозирования с минимизацией ошибок прогноза по срав-

нению с применением традиционных моделей LSTM и CNN-LSTM. Это демонстрирует эф-

фективность дополнения данных TimeGAN в повышении точности прогнозирования. 

Еще одной работой, в которой применяется модель TimeGAN, является исследование 

«Multi-Scale Price Forecasting Based on Data Augmentation» (Yue, Liu, 2024). Данное исследо-

вание направлено на решение проблем, связанных с малым объемом выборки при прогнози-

ровании цен на сельскохозяйственную продукцию. Для исторических данных о сделках с сель-

скохозяйственными товарами характерны длительные интервалы выборки или разреженность 

данных, которые часто приводят к появлению небольших выборок. Обучение на небольших 

выборках может привести к переобучению и усложнить учет мелкомасштабных колебаний, 

что существенно снижает точность прогнозирования. Таким образом, для дополнения и рас-
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ширения данных путем создания реалистичных синтетических временных рядов в данном ис-

следовании используется модель TimeGAN, что позволяет повысить устойчивость модели для 

прогнозирования изменения цен в различных временных масштабах. 

Для оценки сходства между сгенерированными синтетическими временными рядами и 

исходными данными используется метод стохастического вложения соседей с t-распределе-

нием – t-SNE. Авторы используют метод t-SNE в сочетании с расхождением Кульбака–Лей-

блера (KL). Метод t-SNE является методом уменьшения размерности, созданный для улучше-

ния визуального восприятия многмерных рядов данных. Согласно «Обзору методов и систем 

генерации синтетических обучающих данных», этот метод   позволяет наглядно оценить, 

насколько хорошо TimeGAN моделирует структуру и зависимость временных рядов, а также 

помогает проверить качество и реалистичность сгенерированных синтетических данных (Раб-

чевский, 2023). Так, метод t-SNE позволяет авторам визуализировать многомерные данные, 

сводя их к двумерному пространству, благодаря чему исследователи могут сравнивать нели-

нейные зависимости, тренды, аномалии, неоднородные колебания как в синтетических, так и 

в реальных исходных данных. Далее, благодаря мере расхождения Кульбака–Лейблера, ста-

новится возможным количественно оценить различия в распределении между этими наборами 

данных и определить, насколько эффективно синтетические данные воспроизводят характе-

ристики реальных исходных данных. 

Таким образом, предложенный авторами подход при работе с ограниченным набором 

данных повышает эффективность обучения модели. Использование модели TimeGAN позво-

ляет эффективно дополнять исходный набор данных, дает возможность улавливать мелкомас-

штабные колебания и критические зависимости даже при условии малого объема исходной 

выборки, а также обеспечивает повышение точности прогнозирования. 

2. Методология исследования 

Исследование направлено на разработку и сравнительный анализ подходов, в рамках 

которых синтетические временные ряды используются для расширения обучающих выборок 

при прогнозировании спроса на нефть. Основное внимание уделено модели TimeGAN как со-

временному генеративному методу, способному воспроизводить как статистические свойства, 

так и временные зависимости оригинального ряда. В то же время, для обеспечения комплекс-

ной оценки была сформирована наивная модель и были протестированы классические методы 

генерации синтетических данных (GBM, ARIMA, MBB, GN+SMA), которые были улучшены 

для получения максимально «точных» результатов. 

Ключевая идея заключается в том, чтобы дополнить ограниченные исторические 

наблюдения синтетическими временными последовательностями, обладающими высоким 

уровнем реалистичности, но при этом обеспечивающими вариативность и обучающее разно-

образие. Эффективность таких расширений оценивается по двум направлениям:  

1) статистическая близость синтетических данных к оригиналу; 

2) практическая полезность в задаче прогнозирования. 

Результаты обобщены в виде сравнительного анализа всех шести подходов. Ниже пред-

ставлена структура методологии, отражающая общую логику исследования (табл. 1). 
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Таблица 1  

Основные этапы исследования 

№ 
Этап  

исследования 
Детальное описание 

1 Подготовка данных 

Загружаются исходные данные (динамика цен на нефть Brent). 

Временной ряд разбивается на 5 фолдов, которые в свою очередь 

разбиваются на обучающую и тестовую выборки. В каждом фолде 

нормализация обучающих и тестовых данных проводится от-

дельно, min-max вычисляются только по обучающей выборке 

2 

Формирование обу-

чающих окон и раз-

метка целевой пе-

ременной 

Каждый временной ряд разбивается на перекрывающиеся окна 

длиной 30 наблюдений. Для каждого окна вычисляется вектор от-

носительных изменений. Целевая переменная маркируется по 

максимальному абсолютному изменению в горизонте 5 шагов: 

если оно превышает 5%, y=1 (экстремум), иначе y=0 (отсутствие 

экстремума) 

3 
Формирование 

наивной модели 

Наивная модель строится по принципу «если экстремум был в 

прошлом окне – будет и в следующем». Оцениваются Accuracy, 

F1-score, ROC AUC. Эта стратегия служит нижней границей для 

сравнения эффективности машинного обучения и синтетических 

подходов 

4 

Обучение базовой 

модели на реаль-

ных данных (далее 

РД). Получение 

метрик базовой мо-

дели 

Цель модели прогнозирования – по окну из 30 наблюдений про-

гнозировать, произойдет ли экстремальное изменение (больше 

5%) в горизонте 5 шагов вперед. Классификатор получает на вход 

матрицу относительных изменений за 30 дней, целевая перемен-

ная – это факт экстремума на следующих 5 днях. Основная функ-

ция потерь – binary_crossentropy. 

Обучение MLP только на окнах из обучающего ряда реальных 

данных. Для повышения статистической значимости используется 

кросс-валидация по пяти фолдам 

5 

Создание синтети-

ческих рядов и 

оценка качества  

Используются методы GBM, ARIMA, MBB, GN+SMA для созда-

ния синтетических данных для каждого из пяти фолдов. Объем 

синтетических данных всегда равен объему данных в обучающей 

выборке. Для каждого типа синтетики оценивается степень стати-

стического сходства с реальными рядами на тренировочных сег-

ментах. Используются метрики KL-дивергенции, статистика KS, 

Wasserstein Distance 

6 

Обучение с предо-

бучением на синте-

тических данных 

Для каждого генератора синтетики проводится претрейнинг 

нейросети на синтетических окнах (20 эпох), далее осуществля-

ется дообучение (40 эпох) на окнах из реальных данных. Веса сети 

между этапами не сбрасываются 

7 
Тестирование моде-

лей 

Для всех стратегий тестирование производится исключительно на 

окнах из реальных тестовых рядов, чтобы избежать смещения и 

переоценки результатов за счет синтетики. Используются 

Accuracy, F1-score, ROC AUC 

8 Сравнительный 

анализ результатов. 

Оцениваются и сравниваются наивная стратегия, базовая модель 

(РД) и все комбинации с предобучением на синтетике. Ключевой 

критерий – величина прироста метрик по сравнению с обучением 



Манахова И.В., Матыцын А.В. Инновационные подходы к генерации обучающих данных для прогнозирования 
спроса на нефть 

15 

№ 
Этап  

исследования 
Детальное описание 

Определение при-

чин успеха/провала 

моделей 

только на реальных данных, при обязательном тестировании на 

идентичных сегментах 

Для определения причин провала или успеха модели дополни-

тельно производится визуализация фрагментов, автокорреляцион-

ные функции, спектральный анализ, t-SNE и статистика экстрему-

мов 

Источник: составлено авторами. 

На первом этапе формируется исходная экспериментальная база, обеспечивающая кор-

ректность и воспроизводимость последующих процедур моделирования и анализа. В качестве 

первичных данных используются временные ряды цен на нефть марки «Brent», собранные за 

определенный исторический период с фиксированным шагом дискретизации (дневные значе-

ния в период с 2015 по 2020 г.). Далее проводится последовательная организация данных для 

кросс-валидации. Весь исходный временной ряд разбивается на 5 фолдов. Далее для каждого 

фолда выделяется собственный тренировочный и тестовый поднабор (Рисунок 1). Тестовые 

выборки строго не пересекаются с обучающими для предотвращения утечек информации. На 

финальном шаге данного этапа все временные ряды независимо подвергаются нормализации 

методом «min-max», что приводит значения в диапазон [0, 1]. 

 

Рисунок 1. Обучающие и тестирующие данные (составлено авторами) 

На втором этапе из исходных временных рядов формируются входные объекты и соот-

ветствующие им целевые значения, используемые далее для обучения моделей классификации 

экстремальных изменений. Каждый временной ряд преобразуется в совокупность перекрыва-

ющихся окон фиксированной длины. Для этого реализуется «скользящее окно»: начиная с пер-

вой точки, формируется подмассив длины 30, затем окно сдвигается на 1 шаг, и процедура 
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повторяется до конца ряда (рис. 2). В результате для каждого ряда получается матрица при-

знаков. Далее для каждого окна рассчитывается вектор относительных изменений между со-

седними значениями. 

 

Рисунок 2. Схема формирования обучающих окон и признаков методом скользящего окна на временном ряду 

(составлено авторами) 

Для каждого окна, определяемого как последовательность из 30 точек, выделяется те-

кущая цена – последний элемент окна. Затем анализируется поведение ряда на фиксированном 

горизонте в пять точек. Если в течение этого интервала максимальное абсолютное отклонение 

от базовой цены превышает заданный порог, то окну присваивается метка 1 (произошел экс-

тремум). В противном случае метка равна 0 (экстремальное изменение отсутствует) (рис. 3). 

Выбор порога в 5% для определения экстремальных изменений цен на нефть «Brent» обосно-

ван статистическим и методологическим подходом. Расчеты показали, что 5% изменений про-

исходят лишь в 5,2% случаев нашего эмпирического ряда, что соответствует верхнему 94–

96‑квантильному диапазону. Такой подход согласуется с практикой порогового анализа и ре-

грессией по экстремальным квантилям, широко используемой в современных исследованиях 

рынка нефти. Например, ряд ученых (Reboredo, Ugolini, 2016) применяют квантильные зави-

симости для оценки влияния экстремальных изменений цен на нефть на финансовые рынки, 

анализируя при этом, как «самые волатильные 5% движений» воздействуют на акции. Это 

подтверждает обоснованность применения фиксированных порогов, аналогичных нашему 

уровню, в задачах выделения значимых и редких рыночных шоков. 
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Рисунок 3. Схема формирования бинарной метки экстремального изменения по скользящему окну и прогнозному 

горизонту (составлено авторами) 

Таким образом, для каждого фолда и для каждого временного ряда (реального или син-

тетического) формируются две матрицы: 

1) X – матрица признаков (окна относительных изменений); 

2) Y – вектор целевых меток (0/1 по факту наступления или отсутствия экстремума). 

Подход с перекрывающимися окнами и локальными относительными изменениями 

позволяет максимально использовать информацию временного ряда, повышая статистиче-

скую мощность анализа даже при ограниченном объеме данных. Бинарная целевая перемен-

ная ориентирована на задачу детекции экстремальных событий, что соответствует практиче-

ским целям мониторинга и прогноза на финансовых рынках. Этап завершается получением 

наборов признаков и целевых переменных, пригодных для последующего машинного обуче-

ния и сопоставления реальных и синтетических сценариев. Стоит отметить, что после получе-

ния «новых» синтетических данных процесс формирования входных данных и целевых зна-

чений для дальнейшего тестирования на MLP модели, повторяется. 

Третий этап исследования посвящен построению и анализу наивной модели, которая 

служит нижней границей для сравнения всех последующих методов прогнозирования. Задача 

наивной модели заключается в том, чтобы оценить минимальный уровень качества, который 

можно достичь, не используя никаких сложных признаков или обучающих моделей, а опира-

ясь лишь на простейшее правило: для каждого окна модель просто повторяет метку экстре-

мума из предыдущего окна – т. е., если экстремум (существенное изменение цены) был в про-

шлом горизонте, то он предсказывается и для текущего, что имитирует правило «если событие 

было, значит оно и будет». Такой подход исходит из предположения, что экстремальные со-

бытия на рынке обладают определенной автокорреляцией – если резкое движение уже произо-

шло, возможно, оно продолжится или повторится. Данная стратегия не использует никаких 

дополнительных данных или сложных признаков, что делает ее удобным «бейслайном» для 

сравнения: если продвинутые методы, включая нейронные сети, не способны показать явного 
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преимущества по сравнению с наивной моделью, это свидетельствует о бессмысленности по-

строенных «сложных» моделей. 

На четвертом этапе исследования проводится обучение базовой модели машинного 

обучения на окнах, сформированных исключительно из обучающего временного ряда РД. В 

качестве основной прогностической модели была выбрана полносвязная нейронная сеть. Этот 

выбор был сделан с учетом особенностей архитектуры MLP, которая отличается универсаль-

ностью и способностью эффективно решать задачи классификации на основе табличных при-

знаков. В отличие от более сложных рекуррентных, или сверточных, моделей, полносвязная 

нейронная сеть демонстрирует высокую устойчивость при работе с относительно небольшими 

и потенциально несбалансированными выборками, что характерно для временных рядов 

нефтяного рынка. Благодаря своей структуре MLP не требует строгой предподготовки или 

нормализации входных данных и способна работать с различными типами признаков, полу-

ченными из временных окон – например, относительными изменениями цен. Особенно важно 

отметить, что MLP, обладая достаточной глубиной, хорошо аппроксимирует нелинейные за-

висимости, которые могут возникать в сложных экономических процессах, и не теряет произ-

водительность при наличии редких, но важных событий – таких как экстремальные скачки 

цен. Гибкая архитектура сети также позволяет легко адаптироваться под задачу детекции экс-

тремумов, эффективно интегрируя как реальные, так и синтетические обучающие примеры.  

Обучение проводится на базе полносвязной нейронной сети, состоящей из входного 

слоя, двух скрытых слоев с активацией ReLU, нормализацией и дропаутом для предотвраще-

ния переобучения, а также выходного слоя с сигмоидальной активацией для предсказания ве-

роятности экстремума. Оптимизация осуществляется с помощью Adam, используется функ-

ция потерь binary_crossentropy. Для борьбы с дисбалансом классов реализуется схема взвеши-

вания классов, что предотвращает доминирование основной динамики рынка над редкими экс-

тремумами. Для оценки качества обучения реальная выборка разбивается на обучающую и 

валидационную части в пропорции 80/20, при этом сохраняется пропорция экстремумов и 

обычных событий. Такой подход позволяет объективно оценить обобщающую способность 

модели и избежать переобучения на специфических паттернах обучающей выборки. Таким 

образом, данный этап формирует определенный уровень качества для всех последующих экс-

периментов и позволяет объективно оценить вклад синтетических данных. 

Перейдем к анализу пятого этапа и рассмотрим ключевые особенности использования 

традиционных генеративных моделей в представленном исследовании (табл. 2). 

Таблица 2  

Основные особенности генеративных моделей 

Метод Архитектура и алгоритм 
Особенности подбора  

параметров 

ARIMA 

Классическая модель авторегрессии и скользя-

щего среднего с интегрированием. Для каждого 

фолда перебираются параметры (p, d, q), модель 

подбирается индивидуально по минимальному 

AIC. Прогноз строится на всю длину исходного 

(обучающего) ряда, результат – синтетический 

Перебор (grid search) p,d,q 

из диапазона (p=0-3, d=0-

2, q=0-3); отбор по мини-

муму AIC для каждого 

фолда 
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Метод Архитектура и алгоритм 
Особенности подбора  

параметров 

временной ряд, максимально приближенный к ре-

альному тренду 

MBB 

Формирование перекрывающихся блоков длины 

от 5 до 20 с последующей случайной перестанов-

кой. Генерация синтетики с сохранением локаль-

ных временных зависимостей. Подбор оптималь-

ного блока на каждом фолде для минимизации 

средней статистической дистанции по трем метри-

кам 

Автоматический перебор 

размеров блока, скоринг 

по средней KL+KS+WD. 

Для каждого фолда выби-

рается лучший блок 

GN+SMA  

Сначала к каждому ряду добавляется нормальный 

шум (5% от std), затем применяется сглаживание 

скользящим средним (окно 5). Алгоритм реализо-

ван минималистично, без дополнительной адапта-

ции 

Фиксированные пара-

метры (масштаб шума и 

длина окна) 

GBM 

Генерация ряда путем последовательного модели-

рования экспоненциального роста и случайных 

блужданий на основе эмпирических лог-доходно-

стей реального ряда 

Оценка μ и σ на обучаю-

щем ряду, однопроходная 

генерация с фиксирован-

ными параметрами для 

каждого фолда 

Источник: составлено авторами. 

Также рассмотрим особенности авторской TimeGAN модели (табл. 3). 

Таблица 3  

Основные особенности TimeGAN модели 

Аспект Описание 

Тип базовых блоков 

Все модули построены на слоях GRU, что обеспечивает способ-

ность улавливать временные зависимости в данных 

Модульная струк-

тура 

Сеть включает пять отдельных модулей: Embedder, Recovery, Gen-

erator, Supervisor, Discriminator. Каждый модуль – это отдельная 

RNN (GRU) 

Embedder + Recovery 

Служат для кодирования исходных временных рядов в скрытое 

пространство и их восстановления обратно 

Generator 

Принимает случайный шум и генерирует скрытые последователь-

ности, имитирующие динамику реальных данных 

Supervisor 

Особый модуль для прогнозирования следующего шага в скрытом 

пространстве – обучается удлинять латентную последовательность, 

что позволяет моделировать длинные временные зависимости 

Discriminator Отличает реальные скрытые представления от сгенерированных 

Два этапа обучения 

1. Предобучение: обучение Embedder и Supervisor на задаче восста-

новления данных  

2. Совместное обучение Generator, Supervisor, Discriminator, Embed-

der, Recovery 
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Аспект Описание 

Разделение оптими-

заторов 

Для каждого модуля используется отдельный оптимизатор (Adam), 

что позволяет гибко настраивать скорость и стратегию обучения 

разных частей сети. 

Мини-батч и шум 

На вход генератора подается нормальный шум размерности (batch, 

seq_len, z_dim); обучение ведется с батчами даже для малых выбо-

рок 

Восстановление 

Восстановление временного ряда в оригинальное пространство 

происходит только после завершения adversarial-обучения. Это 

предотвращает утечку информации и повышает реалистичность 

синтетических данных 

Совместимость раз-

меров 

Все модули согласованы по размерности скрытого состояния и 

длине входной последовательности. 

Источник: составлено авторами. 

Результатом генерации синтетических рядов являются временные ряды размерности от 

1200 до 1600 элементов, которые в дальнейшем были использованы для предобучения модели 

MLP описанной в четвертом этапе. 

Далее реализуется статистическая оценка качества синтетических временных рядов, 

полученных с помощью различных методов. Синтетические данные были включены в процесс 

предобучения основной модели прогнозирования. Для количественного анализа результатов 

использовались стандартные метрики классификации: Accuracy, F1-score, ROC AUC. Такой 

подход обеспечивает комплексную и воспроизводимую оценку вклада синтетических данных 

в решение прикладных задач прогноза. Благодаря прямому сравнительному анализу моделей, 

обученных только на реальных данных, и моделей с предобучением на синтетике, удалось 

выявить условия, при которых генерация синтетических рядов позволяет достичь существен-

ного улучшения прогностических характеристик. Также был проведен дополнительный ана-

лиз, включающий исследования автокорреляции, спектров, количество экстремумов и распре-

деление признаков у синтетических данных для определения причин полученных результатов. 

Таким образом, применяемая методология в полной мере охватывает ключевые этапы 

– от генерации и валидации синтетических данных до их интеграции в прикладные задачи 

прогнозирования, а последующий анализ на независимой тестовой выборке дает объективную 

картину эффективности синтетических подходов в экономических задачах с дефицитом исто-

рических наблюдений1.  

3. Результаты проведенного исследования 

Рассмотрим количественную оценку качества синтетических данных по основным ста-

тистическим метрикам (табл. 4). 

 
1 Для обеспечения воспроизводимости исследования полный программный код для запуска экспериментов опуб-

ликован на GitHub по адресу: https://github.com/AleksandrM27/Synthetic-data.MLP-

experiment/tree/c34468f6091bb377bd3f423c70784ea9ecdf36dc. 

https://github.com/AleksandrM27/Synthetic-data.MLP-experiment/tree/c34468f6091bb377bd3f423c70784ea9ecdf36dc
https://github.com/AleksandrM27/Synthetic-data.MLP-experiment/tree/c34468f6091bb377bd3f423c70784ea9ecdf36dc
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Таблица 4 

Метрики синтетических данных 

Метод KL-дивергенция KS-статистика Wasserstein-дист. 

MBB 0,0622 0,031 0,5736 

ARIMA 0,0014 0,00434 0,05766 

GBM 2,288 0,638 2,88 

GN+SMA 0,045 0,0148 0,1488 

TimeGAN 0,1844 0,089 1,7382 

Источник: составлено авторами на основе Приложения 1. 

Из приведенных данных можно сделать следующие выводы. 

1. ARIMA демонстрирует наилучшую способность к воспроизведению глобальных 

статистических характеристик исходных данных. Минимальные значения всех трех метрик 

свидетельствуют о высокой идентичности синтетических и реальных временных рядов как с 

точки зрения распределения значений, так и по общей форме динамики. Это указывает на ис-

ключительную пригодность ARIMA для задач, где критически важно сохранение тренда и 

«больших» закономерностей. Однако, как показывает анализ реальных графиков, столь вы-

сокая статистическая близость достигается за счет сильного сглаживания: модель подавляет 

спонтанные краткосрочные флуктуации, что может быть критичным недостатком для задач 

поиска экстремумов и волатильных эпизодов. 

2. GN+SMA и MBB показывают достаточно хорошее совпадение с исходными дан-

ными. Для GN+SMA малые значения KL и KS свидетельствуют о том, что метод хорошо 

имитирует эмпирическое распределение, но его простота (добавление шума с последующим 

сглаживанием) ограничивает воспроизведение сложных зависимостей: динамика становится 

менее естественной, а автокорреляции зачастую размываются. MBB, напротив, отлично вос-

производит внутри-блочные структуры и частично сохраняет короткосрочные паттерны, од-

нако искусственно разрушает длительные зависимости на стыках блоков. Таким образом, оба 

метода подходят для задач, где требуется «быстрая» генерация реалистичных, но не иде-

ально динамических сценариев. 

3. GBM демонстрирует наихудшие показатели соответствия: высокие значения всех 

метрик указывают на значительные отклонения синтетики от реальных данных. Это обуслов-

лено тем, что модель, ориентированная на чисто стохастическую динамику с постоянными 

параметрами дрейфа и волатильности, не способна уловить ни реальных трендов, ни харак-

терных автокорреляций и асимметрий, присущих экономическим временным рядам. На 

практике это приводит к синтетике с чрезмерной волатильностью и низкой прогностической 

ценностью для прикладных задач. 

4. TimeGAN демонстрирует двойственный характер результатов: низкая KL-

дивергенция и KS-статистика указывают на успешное воспроизведение общей формы рас-

пределения, однако по сравнению с некоторыми классическими методами данные показа-

тели сравнительно высокие. Данный результат указывает на то, что модель может искажать 

отдельные детали структуры распределения и динамики. Такой эффект может объясняться 
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сложностью архитектуры TimeGAN и ее склонностью к генерации разнообразных, но не все-

гда идеально «выверенных» сэмплов.  

Таким образом, если целью является максимальное воспроизведение статистических 

свойств исходного ряда, наиболее точный результат обеспечивает ARIMA. Однако для задач, 

где важно сохранять не только распределение, но и динамические особенности или сложную 

структуру, целесообразно рассматривать комбинирование классических и нейросетевых ме-

тодов. 

Перейдем к результатам моделирования MLP модели (табл. 5). 

Таблица 5 

Метрики MLP модели 

Подход Точность F1-score ROC AUC 

Бейслайн 0,586 0,404 0,542 

РД 0,686 0,494 0,628 

РД + MBB 0,652 0,454 0,636 

РД + ARIMA 0,674 0,456 0,638 

РД + GBM 0,658 0,456 0,608 

РД + GN+SMA 0,712 0,542 0,672 

РД + TimeGAN 0,706 0,536 0,676 

Источник: составлено авторами на основе Приложения 2. 

Как показывают результаты табл.  5, включение различных типов синтетических дан-

ных по-разному влияет на качество прогнозирования экстремальных событий на временных 

рядах. Обучение только на реальных данных позволяет достичь сбалансированных показате-

лей по всем метрикам. Добавление бутстрэппинга и ARIMA в обучающую выборку приводит 

к незначительному снижению точности и F1-score по сравнению с использованием только ре-

альных данных, несмотря на небольшое улучшение ROC AUC. Это говорит о том, что подоб-

ные виды синтетики не привносят достаточного разнообразия или сложности, а иногда даже 

могут ослаблять способность модели выявлять экстремумы за счет нарушения временных пат-

тернов. GBM также не демонстрирует значимых улучшений, показатели точности и F1-score 

остаются на уровне, близком к реальным данным, а ROC AUC даже немного снижается. Таким 

образом, генерация данных по GBM не увеличивает прогностическую ценность для рассмат-

риваемой задачи.  

GN+SMA и TimeGAN выделяются на фоне других подходов. Оба метода обеспечивают 

максимальные значения по основным метрикам. Особенно важно, что у TimeGAN наблюда-

ется наибольший прирост ROC AUC, что отражает рост чувствительности модели к аномаль-

ным случаям без потери общего качества. Таким образом, для рассматриваемой задачи синте-

тические ряды, созданные GN+SMA и TimeGAN, оказываются наиболее эффективными для 

повышения качества прогноза. Эти методы позволяют не только расширить обучающее про-

странство, но и улучшить способность модели обнаруживать редкие и значимые события, что 

принципиально важно для анализа сложных временных рядов.  
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Перейдем к анализу синтетических данных для определения причин провала и успеха 

генеративных методов (рис. 4).  

 

Рисунок 4. Визуальное сравнение сгенерированных временных рядов с оригиналом (первые 300 точек) (состав-

лено авторами) 

Уже на этапе визуального сравнения сгенерированных рядов можно наблюдать фунда-

ментальные различия в поведении моделей. Модели GN+SMA и ARIMA демонстрирует 

наибольшую близость к оригиналу: они сохраняют форму сигнала, локальные тренды и коле-

бания, не внося лишней волатильности. TimeGAN, как и ожидалось, обеспечивает достаточно 

реалистичную динамику, но временами уходит в более сильные флуктуации, что может ука-

зывать на переобучение на локальных паттернах. GBM демонстрирует чрезмерно сглаженное 

поведение, теряя микроструктуру оригинального ряда – вероятно, из-за стохастического ха-

рактера модели и отсутствия обучающего механизма. Наихудший результат наблюдается у 

MBB, где видно множество неестественных скачков и артефактов, что может быть связано с 

тем, что модель просто добавляет куски оригинального ряда, не заботясь о согласованности 

границ. Перейдем к анализу автокорреляционных функций (рис. 5). 

 

Рисунок 5. Автокорреляционные функции (ACF) временных рядов: оригинал и генерации (составлено авторами) 

Оригинальный ряд демонстрирует устойчивую и медленно убывающую автокорреля-

цию, характерную для процессов с сильной временной зависимостью. GN+SMA, ARIMA и 
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TimeGAN показывают очень схожую ACF-структуру: медленный спад и устойчивые положи-

тельные корреляции на лаге до 50. Это указывает на то, что эти модели успешно захватывают 

внутреннюю зависимость между временными шагами. GBM, напротив, демонстрирует почти 

плоскую ACF, близкую к случайному шуму – в точности как и ожидалось от геометрического 

броуновского движения. MBB снова проваливает задачу: ACF у него не просто быстро убы-

вает, но еще и ведет себя нестабильно, что указывает на плохую стыковку блоков при бутстре-

пировании. Это подтверждает, что MBB не может воспроизвести глобальную временную 

структуру. 

Следующим этапом анализа является амплитудный спектр (рис. 6). 

 

Рисунок 6. Сравнение спектральных характеристик временных рядов (БПФ-анализ) (составлено авторами) 

Важно отметить, что оригинальные данные имеют четкое доминирование в области 

низких частот, указывающее на наличие трендов и плавных циклов. GN+SMA, ARIMA и 

TimeGAN в целом следуют спектру оригинала, что означает, что они сохраняют основные 

компоненты частотного спектра. MBB, напротив, проявляет всплески в среднем диапазоне ча-

стот – это соответствует визуально наблюдаемым скачкам и шумам. GBM остается близким к 

шуму: энергия спектра распределена относительно равномерно и быстро затухает, что также 

говорит о недостатке внутренней структуры. 

Рассмотрим сравнение количества экстремумов (рис. 7). 
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Рисунок 7. Сравнение количества экстремумов (составлено авторами) 

На представленном рисунке 7 можно заметить, что GN+SMA и ARIMA воспроизводят 

количество экстремумов, близкое к оригинальному ряду. TimeGAN существенно переоцени-

вает экстремумы, что согласуется с визуальными наблюдениями об избыточной волатильно-

сти. MBB – снова антилидер: количество экстремумов почти в 2,5 раза выше, чем у оригинала, 

что указывает на грубые скачки. GBM также имеет существенные отличия в количестве экс-

тремумов в отличие от оригинальных данных. 

Перейдем к заключительной, t-SNE визуализации «окон» (рис. 8). 

 

Рисунок 8. Сравнение t-SNE «окон» из разных источников (составлено авторами) 
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GN+SMA и ARIMA демонстрируют наиболее близкое распределение к оригиналу: их 

окна размещаются вблизи кластеров оригинального ряда, что говорит о высоком уровне вос-

произведения локальных зависимостей и статистической структуры. Это согласуется с их по-

ведением на графиках ACF и спектрального анализа. В то же время TimeGAN формирует бо-

лее обособленные области на проекции, отличающиеся от структуры оригинальных окон. Это 

говорит о том, что модель не просто копирует структуру обучающего ряда, а генерирует ва-

риативные – и отчасти новые – паттерны поведения. Это может быть как преимуществом, так 

и источником потенциальных отклонений от реальных данных, особенно если новизна выхо-

дит за рамки допустимого. MBB и GBM, как и ожидалось, демонстрируют наибольшее удале-

ние от оригинала. Их окна формируют плотности, которые не пересекаются с оригинальными 

и указывают на принципиально иную динамику. В случае MBB это связано с грубым копиро-

ванием блоков и отсутствием глобальной согласованности. 

Комплексная визуализация свойств синтетических и оригинальных временных рядов 

демонстрирует принципиальные различия между подходами GN+SMA и TimeGAN. GN+SMA 

практически идентичен реальным данным по визуальному рисунку, спектру и автокорреля-

ции, но значительно занижает число экстремальных событий, т. е. сглаживает динамику и не 

вносит новых сценариев. TimeGAN, напротив, создает большее разнообразие паттернов и фор-

мирует избыточное число экстремумов, что проявляется как в t-SNE (отдельные кластеры), 

так и в спектре и количестве экстремумов. Таким образом, GN+SMA дает максимально «без-

опасную» синтетику, а TimeGAN, расширяет пространство сценариев, но требует дополни-

тельной настройки для контроля волатильности и экстремумов. 

Анализ MLP метрик и визуализаций позволяет сделать ряд выводов о причинах успехов 

и провалов моделей. 

1. GN+SMA – это единственный традиционный метод, который уверенно показывает 

сильные результаты. Причина, с точки зрения авторов, – это способность сохранять ключевые 

структурные свойства временного ряда. Он воспроизводит плавность, автокорреляцию и ха-

рактерный частотный спектр оригинальных данных, без внесения шумов или артефактов. Ви-

зуально сигналы, сгенерированные этим методом, неотличимы от реальных, и это подтвер-

ждается тем, что в t-SNE их окна частично перекрываются с окнами оригинала. Однако 

GN+SMA не создает новые сценарии, он сглаживает поведение и снижает количество экстре-

мумов, фактически устраняя крайние события. Тем не менее, это работает: классификатор по-

лучает больше стабильных, чистых примеров и выучивает основную структуру сигнала го-

раздо лучше. Успех GN+SMA не в расширении пространства, а в усилении сигнала и устране-

нии шумов, что критически важно при обучении модели, ориентированной на распознавание 

форм. 

2. TimeGAN также показывает высокие значения по качеству и делает это за счет 

принципиально другой стратегии. Модель не просто воспроизводит форму сигнала, она гене-

рирует новые паттерны, основанные на скрытых структурах в обучающем ряду. Визуально 

данные TimeGAN выглядят реалистично, но обладают более выраженной волатильностью, бо-

лее сложным спектром и большим числом экстремумов. В t-SNE их окна образуют обособлен-

ные кластеры, что говорит о реальном расширении сценарного пространства. Это делает мо-

дель особенно ценной для задач, где важно научить классификатор справляться с вариативно-

стью и неожиданными случаями, например, для стресс-тестов. Однако та же самая вариатив-
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ность может снижать надежность: если разнообразие выходит за границы статистической до-

стоверности, классификатор начинает учиться на нерелевантных паттернах. Успех TimeGAN 

заключается в новизне и обобщении, но его слабость в потребности калибровки, чтобы не со-

здать избыточную нестабильность в обучении. 

3. ARIMA – это модель, строго ограниченная своей природой. Она воспроизводит 

только предсказуемую, стационарную компоненту ряда. Визуально сигналы выглядят чи-

стыми и корректными: ACF стабильна, спектр сосредоточен в низких частотах, экстремумы 

соответствуют оригиналу. Однако именно это делает ARIMA структурно бесполезной в кон-

тексте задачи синтетического обогащения. Она не вносит ничего нового в обучающую вы-

борку. На t-SNE видно, что ее окна полностью накладываются на оригинальные, не добавляя 

ни ширины, ни глубины в признаковое пространство. Это объясняет слабый, но стабильный 

прирост метрик: ARIMA не искажает, но и не обучает. Ее эффект обусловлен лишь увеличе-

нием объема выборки, а не качественным расширением данных. 

4. MBB, на первый взгляд, представляется логичным методом, так как работает с ре-

альными фрагментами исходного ряда и способен сохранять локальные временные зависимо-

сти внутри блока. Однако его применение к нестационарным данным приводит к существен-

ным методологическим ограничениям. Главная проблема заключается в нарушении согласо-

ванности на стыках блоков: соединение случайных отрезков порождает неестественные 

скачки, нестабильную автокорреляционную функцию, резкие искажения спектра и аномаль-

ный рост числа экстремумов. Анализ t-SNE дополнительно демонстрирует отчетливое отде-

ление окон, сгенерированных MBB, от облака оригинальных данных, что указывает на струк-

турную деформацию синтетики. В результате классификатор, обучаемый на таких данных, 

начинает воспринимать шум и артефакты как значимые сигналы, чего нет в реальных рыноч-

ных паттернах. Это ведет к размыванию границ классов и снижению обобщающей способно-

сти модели. Таким образом, основной недостаток MBB заключается в генерации вредных, ис-

кажающих примеров, которые нарушают структуру исходного ряда и затрудняют формирова-

ние устойчивых прогностических правил. Для повышения эффективности такого метода тре-

буется либо стационаризация исходного ряда, либо применение более адаптивных генератив-

ных подходов, способных корректно работать с особенностями рыночных данных. 

5. GBM – это наиболее оторванный от реальности подход. Он генерирует траектории 

без памяти, без автокорреляции и без структуры, опираясь на независимые приращения. На 

визуализациях GBM производит либо упрощенные, либо случайные сигналы, спектр у него 

быстро затухает, ACF стремится к нулю, а в t-SNE он оказывается на максимальном удалении 

от оригинальных данных. Такие ряды не несут обучающей ценности: они структурно неин-

формативны и статистически чужды. Классификатор, сталкиваясь с ними, не учится – он дез-

ориентируется. GBM не просто не помогает, он разрушает обучающее пространство, внося 

совершенно нерелевантные зависимости. Это объясняет его слабый результат: он добавляет 

объем, но в нем нет смысла. 

Таким образом, результаты свидетельствуют о том, что применение TimeGAN действи-

тельно позволяет существенно расширить разнообразие обучающих данных и смоделировать 

сценарии, не встречавшиеся в историческом ряду. Это повышает потенциал модели для обоб-

щения и тестирования на неожиданных рыночных режимах, что может быть крайне ценно для 

задач стресс-тестирования и выявления уязвимостей прогностических моделей. Однако отме-
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ченное увеличение числа экстремумов и локальных колебаний требует дополнительной ка-

либровки и контроля параметров генерации, чтобы избежать переоценки рисков и поддержи-

вать реалистичность синтетических данных.  

Результаты исследования лишь частично подтверждают выдвинутые гипотезы, и по 

каждой из них следует сделать важные оговорки. 

1. Синтетические временные ряды, сгенерированные с помощью TimeGAN, действи-

тельно демонстрируют относительно низкую KL-дивергенцию, KS-статистику и Wasserstein-

дистанцию (для нейросетевых моделей). Однако данные метрики заметно выше, чем у неко-

торых классических методов. Это указывает на то, что, несмотря на сохранение общей формы 

распределения, синтетика TimeGAN не всегда полностью воспроизводит тонкие особенности 

динамики исходных данных. Следовательно, ключевые статистические и динамические свой-

ства могут быть переданы не в полной мере, особенно если сравнивать с результатами ARIMA 

по ряду метрик. 

2. Добавление синтетических рядов TimeGAN к обучающей выборке действительно 

приводит к росту всех целевых метрик прогноза (Accuracy, F1-score, ROC AUC) относительно 

использования только реальных данных. Однако этот прирост носит умеренный характер: по-

казатели улучшаются не радикально, а различия между TimeGAN и, например, GN+SMA за-

частую незначительны, что говорит о том, что эффективность TimeGAN может зависеть от 

специфики конкретной задачи и выбранной архитектуры модели. Важно также отметить, что 

некоторые классические методы, несмотря на скромные статистические метрики, могут в ряде 

случаев обеспечивать сравнимый или даже лучший вклад в итоговое качество модели – в част-

ности, по ROC AUC GN+SMA и TimeGAN показывают близкие результаты. 

3. Гипотеза о безусловном превосходстве TimeGAN над классическими генераторами 

требует уточнения. Хотя TimeGAN действительно обеспечивает лучший баланс между стати-

стическим соответствием и прикладной пользой синтетики, отдельные классические подходы 

(например, ARIMA) по ряду статистических критериев обеспечивают более высокое совпаде-

ние с оригинальным рядом, а GN+SMA по некоторым прикладным метрикам не только не 

уступает TimeGAN, но и превосходит. Таким образом, применение TimeGAN целесообразно 

в задачах, где важна генерация структурно разнообразных и вариативных данных, однако его 

преимущества не всегда оказываются однозначными или максимальными по всем направле-

ниям оценки. 

В целом, результаты демонстрируют, что нейросетевая генерация синтетических рядов 

с помощью TimeGAN способна повысить качество обучения и прогноза в условиях ограни-

ченной исторической информации, однако эффект зависит от сочетания статистических, ди-

намических и прикладных характеристик данных, а преимущества над классическими подхо-

дами могут быть не столь однозначны, как предполагалось изначально. 

Тем не менее, по мнению авторов, результаты представленного исследования все-таки 

указывают, что использование модели TimeGAN позволяет эффективно дополнять исходный 

набор данных. Данный вывод соотносится с результатами исследований «Synthetic Time Series 

Data Generation Using Time GAN with Synthetic and Real-Time Data Analysis» (Juneja et al., 

2023), «Volatility and Irregularity Capturing in Stock Price Indices Using Time Series Generative 
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Adversarial Networks (TimeGAN)» (Mushunje et al, 2023), «Multi-Scale Price Forecasting Based 

on Data Augmentation» (Yue, Liu, 2024). 

Также подчеркиваются некоторые ограничения модели TimeGAN. Хотя модель спо-

собна воспроизводить крупные тренды и резкие скачки, ей может быть сложно воспроизвести 

мелкие колебания и редкие аномалии с такой же точностью. Это согласуется с выводами дру-

гих исследователей, которые отмечают, что высокая вычислительная сложность и архитектур-

ные особенности TimeGAN могут быть препятствием для ее широкого применения в задачах, 

требующих моделирования сложных взаимосвязей. 

Заключение 

Проведенный анализ продемонстрировал, что синтетические временные ряды, создан-

ные с помощью TimeGAN, обладают высоким уровнем реалистичности. Это подтверждается 

количественной оценкой. С учетом результатов анализа специфики динамики стоимости 

нефти марки «Brent» можно сделать вывод, что модели TimeGAN являются сравнительно эф-

фективными для увеличения обучающей выборки и имеют ряд преимуществ перед традици-

онными моделями. Однако, важным аспектом данного исследования также является опреде-

ление проблем моделей TimeGAN, которые указывают на существенные сложности в исполь-

зовании данного типа моделей в условиях слабых вычислительных мощностей и высокую тре-

бовательность к навыкам в области настройки моделей машинного обучения. Это указывает 

на необходимость дальнейших исследований для оптимизации архитектуры TimeGAN и ее 

адаптации к специфике нефтяного рынка. 

В перспективе требуется более детально изучить риск нестабильности обучения для 

избегания критических ошибок моделирования, а также сформулировать методологию для 

проверки синтетических данных на реалистичность. Эти шаги позволят еще более эффективно 

использовать потенциал синтетических данных и способствовать повышению устойчивости и 

точности прогнозирования в условиях изменчивой рыночной среды. 
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Приложение 1 

Метрики синтетических данных 

MBB  

Fold Best block size Средний 

Score 

KL-дивергенция KS-

статистика 

Wasserstein-

дист. 

Fold 1  5 0,315 0,112 0,045 0,787 

Fold 2  9 0,245 0,098 0,027 0,609 

Fold 3  10 0,180 0,040 0,024 0,475 

Fold 4  15 0,201 0,034 0,033 0,536 

Fold 5  7 0,172 0,027 0,026 0,461 

ARIMA 

Fold ARIMA(p,d,q) KL-дивергенция KS-

статистика 

Wasserstein-

дист. 

Fold 1  (1, 1, 0) 0,0007 0,0050 0,0644 

Fold 2  (0, 1, 0) 0,0000 0,0015 0,0480 

Fold 3  (2, 1, 2) 0,0021 0,0043 0,0544 

Fold 4  (2, 1, 3) 0,0019 0,0053 0,0612 

Fold 5  (2, 1, 3) 0,0021 0,0056 0,0603 

GBM 

Fold μ σ KL-дивергенция KS-

статистика 

Wasserstein-

дист. 

Fold 1  -4,7E-05 2,1E-02 6,2E-01 1,8E-01 8,5E+00 

Fold 2  -3,8E-05 2,1E-02 6,4E+00 8,0E-01 4,5E+01 

Fold 3  -6,2E-04 2,4E-02 1,2E+00 5,5E-01 1,5E+01 

Fold 4  -2,6E-04 2,7E-02 1,1E+00 7,2E-01 3,2E+01 

Fold 5  -1,5E-04 2,6E-02 3,5E+00 7,2E-01 3,3E+01 

GN+SMA 

Fold Noise scale SMA 

window 

KL-дивергенция KS-

статистика 

Wasserstein-

дист. 

Fold 1  0,05 5 0,033 0,014 0,154 

Fold 2  0,05 5 0,068 0,016 0,152 

Fold 3  0,05 5 0,029 0,016 0,138 

Fold 4  0,05 5 0,044 0,015 0,147 

Fold 5  0,05 5 0,051 0,013 0,153 

TimeGAN  

Fold KL-дивергенция KS-

статистика 

Wasserstein-

дист. 

Fold 1  0,196 0,071 1,428 

Fold 2  0,171 0,085 1,491 

Fold 3  0,213 0,103 1,713 

Fold 4  0,178 0,096 2,075 

Fold 5  0,164 0,090 1,984 
Источник: составлено авторами. 
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Приложение 2 

Результаты моделирования 

Бейслайн 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,62 0,55 0,61 41,89 74 [[29, 14], [14, 17]] 

2 0,55 0,49 0,55 44,59 74 [[25, 16], [17, 16]] 

3 0,57 0,30 0,50 31,08 74 [[35, 16], [16, 7]] 

4 0,61 0,29 0,51 28,38 74 [[39, 14], [15, 6]] 

5 0,58 0,39 0,54 35,14 74 [[33, 15], [16, 10]] 

Обучение на РД 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,65 0,55 0,66 41,89 74 [[32, 11], [15, 16]] 

2 0,65 0,54 0,64 44,59 74 [[33, 8], [18, 15]] 

3 0,73 0,44 0,57 31,08 74 [[46, 5], [15, 8]] 

4 0,72 0,46 0,65 28,38 74 [[44, 9], [12, 9]] 

5 0,68 0,48 0,62 35,14 74 [[39, 9], [15, 11]] 

Обучение на РД+MBB 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,57 0,50 0,61 41,89 74 [[26, 17], [15, 16]] 

2 0,65 0,54 0,65 44,59 74 [[33, 8], [18, 15]] 

3 0,70 0,35 0,60 31,08 74 [[46, 5], [17, 6]] 

4 0,73 0,47 0,64 28,38 74 [[45, 8], [12, 9]] 

5 0,61 0,41 0,68 35,14 74 [[35, 13], [16, 10]] 

Обучение на РД+ARIMA 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,72 0,66 0,71 41,89 74 [[33, 10], [11, 20]] 

2 0,62 0,52 0,68 44,59 74 [[31, 10], [18, 15]] 

3 0,66 0,32 0,57 31,08 74 [[43, 8], [17, 6]] 

4 0,73 0,41 0,66 28,38 74 [[47, 6], [14, 7]] 

5 0,64 0,37 0,57 35,14 74 [[39, 9], [18, 8]] 

Обучение на РД+GBM 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,69 0,61 0,64 41,89 74 [[33, 10], [13, 18]] 

2 0,61 0,43 0,59 44,59 74 [[34, 7], [22, 11]] 

3 0,65 0,38 0,55 31,08 74 [[40, 11], [15, 8]] 

4 0,69 0,38 0,63 28,38 74 [[44, 9], [14, 7]] 

5 0,65 0,48 0,63 35,14 74 [[36, 12], [14, 12]] 

Обучение на РД+(GN+SMA) 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,72 0,60 0,72 41,89 74 [[37, 6], [15, 16]] 

2 0,61 0,51 0,64 44,59 74 [[30, 11], [18, 15]] 

3 0,77 0,56 0,67 31,08 74 [[46, 5], [12, 11]] 

4 0,70 0,39 0,56 28,38 74 [[45, 8], [14, 7]] 

5 0,76 0,65 0,77 35,14 74 [[39, 9], [9, 17]] 

Обучение на РД+TimeGAN 

Фолд Точность F1-score ROC AUC Экстр (%) Кол-во ConfMat 

1 0,69 0,62 0,75 41,89 74 [[32, 11], [12, 19]] 

2 0,64 0,58 0,67 44,59 74 [[30, 11], [15, 18]] 

3 0,74 0,49 0,59 31,08 74 [[46, 5], [14, 9]] 

4 0,76 0,47 0,70 28,38 74 [[48, 5], [13, 8]] 

5 0,70 0,52 0,67 35,14 74 [[40, 8], [14, 12]] 
Источник: составлено авторами. 
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Abstract 

This study explores methods for generating training data to improve demand forecasting ac-

curacy in the oil market. The limitations of traditional approaches are examined, and the use of gen-

erative adversarial networks, specifically the TimeGAN (Time-series Generative Adversarial Net-

work) model, is proposed for creating synthetic time series data. The results demonstrate that Time-

GAN can generate realistic data closely resembling actual data, preserving market volatility and 

structural characteristics. However, model limitations were identified, suggesting the need for further 

research to enhance forecast efficiency and accuracy on the oil in volatile market conditions. 
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